2022年CPI同比上涨2.0% 2023年物价会如何?******
中新网1月12日电(中新财经记者 谢艺观)12日,国家统计局公布2022年全年及12月份CPI数据。受鲜菜价格降幅收窄、鲜果价格涨幅扩大等因素影响,2022年12月份CPI同比上涨1.8%。另,2022年全年CPI同比上涨2.0%。
CPI涨跌幅走势图。来自国家统计局。2022年12月CPI同比涨幅小幅扩大
国家统计局数据显示,从同比看,2022年12月CPI上涨1.8%,涨幅比前月扩大0.2个百分点。其中,食品价格上涨4.8%,涨幅比前月扩大1.1个百分点,影响CPI上涨约0.87个百分点;非食品价格上涨1.1%,涨幅与前月相同,影响CPI上涨约0.92个百分点。
据国家统计局城市司首席统计师董莉娟介绍,食品中,猪肉价格上涨22.2%,涨幅比前月回落12.2个百分点;薯类和鲜果价格分别上涨12.7%和11.0%,涨幅均有扩大;鸡蛋、食用油和粮食价格分别上涨10.0%、7.2%和2.6%,涨幅均有回落;鲜菜价格下降8.0%,降幅收窄13.2个百分点。
“扣除食品和能源价格的核心CPI略有回升,同比上涨0.7%,涨幅比前月扩大0.1个百分点。”董莉娟指出。
资料图:新疆乌鲁木齐市某购物中心。 中新社记者 刘新 摄鲜菜、鲜果价格环比上涨,猪肉价格降幅扩大
从环比看,2022年12月CPI由前月下降0.2%转为持平。其中,食品价格由前月下降0.8%转为上涨0.5%,影响CPI上涨约0.09个百分点。
董莉娟提到,食品中,受季节性因素影响,鲜菜和鲜果价格分别上涨7.0%和4.7%;生猪供给持续增加,猪肉价格下降8.7%,降幅比前月扩大8.0个百分点。
“鲜菜、鲜果价格环比大涨,是食品价格反弹的最重要因素,主要原因是冬季供给偏弱,以及2023年春节移至1月引发的节日性上涨效应提前。”民生银行首席经济学家温彬表示。
资料图:海口市民在农贸市场购物。 张月和 摄2022年CPI涨幅处在预期目标内
国家统计局公布信息显示,2022年全年CPI同比上涨2.0%,处在3%左右的预期目标内。
国家发改委价格司司长万劲松12日在发布会上表示,我国物价总水平持续平稳运行,国内CPI单月涨幅始终运行在3%以下,全年上涨2%,大幅低于美国8%左右、欧元区8%以上、英国9%左右等发达经济体涨幅,也明显低于印度、巴西、南非等新兴经济体7%—10%(1—11月份)的涨幅。国际胀、国内稳,对比十分鲜明。
“2022年,面对40年以来全球出现的最大通胀压力,我国通过保持定力的财政货币政策、及时有效的疫情防控措施、完善的工业生产体系以及相对安全的能源粮食保障,始终保持着相对温和的通胀水平。”温彬称。
资料图:成都市锦江区,民众在大型超市内购物。 中新社记者 刘忠俊 摄今年CPI走势会如何?
2022年,国内物价保持平稳的运行态势,2023年物价会否出现明显波动?
万劲松表示,2023年,尽管国际大宗商品价格可能高位波动,输入性通胀压力仍然存在,但我国物价保持平稳运行具有坚实基础。“粮食生产连续丰收,生猪产能合理充裕,重要民生商品供应充足,基础能源保障有力,保供稳价体系进一步健全,完全有信心、有能力继续保持物价总体稳定。”
“2023年,我国CPI预计将继续保持温和水平。”温彬认为,综合来看,2023年外部通胀压力减轻,食品价格保持温和和相对较低的翘尾因素将限制CPI的涨幅,但随着疫情防控措施优化,我国内需开启复苏进程,将推升核心CPI的修复,并主导CPI中枢的回升。预计2023年全年CPI同比上涨2.1%,略高于2022年的水平。(完)
你的隐私,大数据怎知道?我们又该如何自我保护?****** 在网络上,每个人都会或多或少,或主动或被动地泄露某些碎片信息。这些信息被大数据挖掘,就存在隐私泄露的风险,引发信息安全问题。面对汹涌而来的5G时代,大众对自己的隐私保护感到越来越迷茫,甚至有点不知所措。那么,你的隐私,大数据是怎么知道的呢?大家又该如何自我保护呢? 1.“已知、未知”大数据都知道 大数据时代,每个人都有可能成为安徒生童话中那个“穿新衣”的皇帝。在大数据面前,你说过什么话,它知道;你做过什么事,它知道;你有什么爱好,它知道;你生过什么病,它知道;你家住哪里,它知道;你的亲朋好友都有谁,它也知道……总之,你自己知道的,它几乎都知道,或者说它都能够知道,至少可以说,它迟早会知道! 甚至,连你自己都不知道的事情,大数据也可能知道。例如,它能够发现你的许多潜意识习惯:集体照相时你喜欢站哪里呀,跨门槛时喜欢先迈左脚还是右脚呀,你喜欢与什么样的人打交道呀,你的性格特点都有什么呀,哪位朋友与你的观点不相同呀…… 再进一步说,今后将要发生的事情,大数据还是有可能知道。例如,根据你“饮食多、运动少”等信息,它就能够推测出,你可能会“三高”。当你与许多人都在独立地购买感冒药时,大数据就知道:流感即将暴发了!其实,大数据已经成功地预测了包括世界杯比赛结果、股票的波动、物价趋势、用户行为、交通情况等。 当然,这里的“你”并非仅仅指“你个人”,包括但不限于,你的家庭,你的单位,你的民族,甚至你的国家等。至于这些你知道的、不知道的或今后才知道的隐私信息,将会把你塑造成什么,是英雄还是狗熊?这却难以预知。 2.数据挖掘就像“垃圾处理” 什么是大数据?形象地说,所谓大数据,就是由许多千奇百怪的数据,杂乱无章地堆积在一起。例如,你在网上说的话、发的微信、收发的电子邮件等,都是大数据的组成部分。在不知道的情况下被采集的众多信息,例如被马路摄像头获取的视频、手机定位系统留下的路线图、驾车的导航信号等被动信息,也都是大数据的组成部分。还有,各种传感器设备自动采集的有关温度、湿度、速度等万物信息,仍然是大数据的组成部分。总之,每个人、每种通信和控制类设备,无论它是软件还是硬件,其实都是大数据之源。 大数据利用了一种名叫“大数据挖掘”的技术,采用诸如神经网络、遗传算法、决策树、粗糙集、覆盖正例排斥反例、统计分析、模糊集等方法挖掘信息。大数据挖掘的过程,可以分为数据收集、数据集成、数据规约、数据清理、数据变换、挖掘分析、模式评估、知识表示等八大步骤。 不过,这些听起来高大上的大数据产业,几乎等同于垃圾处理和废品回收。 这并不是在开玩笑。废品收购和垃圾收集,可算作“数据收集”;将废品和垃圾送往集中处理场所,可算作“数据集成”;将废品和垃圾初步分类,可算作“数据规约”;将废品和垃圾适当清洁和整理,可算作“数据清理”;将破沙发拆成木、铁、布等原料,可算作“数据变换”;认真分析如何将这些原料卖个好价钱,可算作“数据分析”;不断总结经验,选择并固定上下游卖家和买家,可算作“模式评估”;最后,把这些技巧整理成口诀,可算作“知识表示”。 再看原料结构。大数据具有异构特性,就像垃圾一样千奇百怪。如果非要在垃圾和大数据之间找出本质差别的话,那就在于垃圾是有实体的,再利用的次数有限;而大数据是虚拟的,可以反复处理,反复利用。例如,大数据专家能将数据(废品)中挖掘出的旅客出行规律交给航空公司,将某群体的消费习惯卖给百货商店等。总之,大数据专家完全可以“一菜多吃”,反复利用,而且时间越久,价值越大。换句话说,大数据是很值钱的“垃圾”。 3.大数据挖掘永远没有尽头 大数据挖掘,虽然能从正面创造价值,但是也有其负面影响,即存在泄露隐私的风险。隐私是如何被泄露的呢?这其实很简单,我们先来分解一下“人肉搜索”是如何侵犯隐私的吧! 一大群网友,出于某种目的,利用自己的一切资源渠道,尽可能多地收集当事人或物的所有信息;然后,将这些信息按照自己的目的提炼成新信息,反馈到网上与别人分享。这就完成了第一次“人肉迭代”。 接着,大家又在第一次人肉迭代的基础上,互相取经,再接再厉,交叉重复进行信息的收集、加工、整理等工作,于是,便诞生了第二次“人肉迭代”。如此循环往复,经过多次不懈迭代后,当事人或物的画像就跃然纸上了。如果构成“满意画像”的素材确实已经证实,至少主体是事实,“人肉搜索”就成功了。 几乎可以断定,只要参与“人肉搜索”的网友足够多,时间足够长,大家的毅力足够强,那么任何人都可能无处遁形。 其实,所谓的大数据挖掘,在某种意义上说,就是由机器自动完成的特殊“人肉搜索”而已。只不过,这种搜索的目的,不再限于抹黑或颂扬某人,而是有更加广泛的目的,例如,为商品销售者寻找最佳买家、为某类数据寻找规律、为某些事物之间寻找关联等。总之,只要目的明确,那么,大数据挖掘就会有用武之地。 如果将“人肉搜索”与大数据挖掘相比,网友被电脑所替代;网友们收集的信息,被数据库中的海量异构数据所替代;网友寻找各种人物关联的技巧,被相应的智能算法替代;网友们相互借鉴、彼此启发的做法,被各种同步运算所替代。 各次迭代过程仍然照例进行,只不过机器的迭代次数更多,速度更快,每次迭代其实就是机器的一次“学习”过程。网友们的最终“满意画像”,被暂时的挖掘结果所替代。之所以说是暂时,那是因为对大数据挖掘来说,永远没有尽头,结果会越来越精准,智慧程度会越来越高,用户只需根据自己的标准,随时选择满意的结果就行了。 当然,除了相似性外,“人肉搜索”与“大数据挖掘”肯定也有许多重大的区别。例如,机器不会累,它们收集的数据会更多、更快,数据的渠道来源会更广泛。总之,网友的“人肉搜索”,最终将输给机器的“大数据挖掘”。 4.隐私保护与数据挖掘“危”“机”并存 必须承认,就当前的现实情况来说,大数据隐私挖掘的“杀伤力”,已经远远超过了大数据隐私保护的能力;换句话说,在大数据挖掘面前,当前人类有点不知所措。这确实是一种意外。自互联网诞生以后,在过去几十年,人们都不遗余力地将碎片信息永远留在网上。其中的每个碎片虽然都完全无害,可谁也不曾意识到,至少没有刻意去关注,当众多无害碎片融合起来,竟然后患无穷! 不过,大家也没必要过于担心。在人类历史上,类似的被动局面已经出现过不止一次了。从以往的经验来看,隐私保护与数据挖掘之间总是像“走马灯”一样轮换的——人类通过对隐私的“挖掘”,获得空前好处,产生了更多需要保护的“隐私”,于是,不得不再回过头来,认真研究如何保护这些隐私。当隐私积累得越来越多时,“挖掘”它们就会变得越来越有利可图,于是,新一轮的“挖掘”又开始了。历史地来看,人类在自身隐私保护方面,整体处于优势地位,在网络大数据挖掘之前,“隐私泄露”并不是一个突出的问题。 但是,现在人类需要面对一个棘手的问题——对过去遗留在网上的海量碎片信息,如何进行隐私保护呢?单靠技术,显然不行,甚至还会越“保护”,就越“泄露隐私”。 因此,必须多管齐下。例如从法律上,禁止以“人肉搜索”为目的的大数据挖掘行为;从管理角度,发现恶意的大数据搜索行为,对其进行必要的监督和管控。另外,在必要的时候,还需要重塑“隐私”概念,毕竟“隐私”本身就是一个与时间、地点、民族、文化等有关的约定俗成的概念。 对于个人的网络行为而言,在大数据时代,应该如何保护隐私呢?或者说,至少不要把过多包含个人隐私的碎片信息遗留在网上呢?答案只有两个字:匿名!只要做好匿名工作,就能在一定程度上,保护好隐私了。也就是说,在大数据技术出现之前,隐私就是把“私”藏起来,个人身份可公开,而大数据时代,隐私保护则是把“私”公开(实际上是没法不公开),而把个人身份隐藏起来,即匿名。 (作者:杨义先、钮心忻,均为北京邮电大学教授) 中国网客户端 国家重点新闻网站,9语种权威发布 |